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Problem Definition
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Problem Definition
• Real application areas in engineering characterised by

having a very different distribution of examples among
their classes.

• Intrinsic to the problem or due to limitations during the
data collection process.

• Positive class often represents the concept of the
highest interest for the problem, whereas the negative
class represents counter-examples.

• Problem of imbalanced data-sets: imposes a bias for the
correct identification of the different concepts to be learnt.
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Example of applications

Taken from: G. Haixiang et al. ESwA 73 (2017), 220-239  
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Example of applications

Taken from: G. Haixiang et al. ESwA 73 (2017), 220-239  
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Example of Imbalanced Classification
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Why learning from imbalanced data-sets 
might be difficult?

Search process 
guided by global

error rates.

Classification 
rules over the 
positive class 

are highly 
specialized. 

Ignore small 
clusters: 

classifying 
large ones 
accurately
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Properties and Difficulty
•

V. López, A. Fernandez, S. García, V. Palade, F. Herrera, An Insight into Classification with Imbalanced Data: Empirical
Results and Current Trends on Using Data Intrinsic Characteristics. Information Sciences 250 (2013) 113-141
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Intrinsic Data Issuess: Same class ratio

Easy problem Difficult problem
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V. López, A. Fernandez, S. García, V. Palade, F. Herrera, An Insight into Classification with Imbalanced Data: Empirical
Results and Current Trends on Using Data Intrinsic Characteristics. Information Sciences 250 (2013) 113-141



The importance of data representation
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Taken from: https://imbalanced-learn.readthedocs.io/en/stable/introduction.html

https://imbalanced-learn.readthedocs.io/en/stable/introduction.html
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Evaluation: Common metrics (accuracy) 
may lead to erroneous conclusions
Imbalanced Problem: misses 7 out

of 24 examples (blue): 30%
Balanced Problem: misses 15 out

of 130 examples (blue): 11%
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Evaluation: Measuring performance in 
imbalanced domains

Positive 
Prediction

Negative
Prediction

Positive 
Class

True 
Positive 

(TP)

False 
Negative

(FN)

Negative
Class

False 
Positive 

(FP)

True 
Negative

(TN)

• Classical evaluation:

• 𝑎𝑐𝑐 = $%&$'
$%&$'&(%&('

• It does not take into
account the “Individual 
Rates”, 
• Very important in 

imbalanced problems
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Sensitivity and Specificity
• Positive true ratio 
(sensitivity):
• 𝑇𝑃𝑅 = $%

$%&('

• Negative true ratio 
(specificity):
• 𝑇𝑁𝑅 = $'

$'&(%

• Geometric Mean:
• 𝐺𝑀 = 𝑇𝑃𝑅 · 𝑇𝑁𝑅

• Single class metrics
provide a unique vision of
the performance

• Sensitivity must be
stressed

• The fraction only considers
same class samples

• Aggregation functions are
important for a global
vision
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R. Barandela, J.S. Sánchez, V. García, E. Rangel. Strategies for learning in class imbalance problems. Pattern Recognition
36:3 (2003) 849-851



F-Measure
• F1 score is a harmonic mean between precision and 

recall:
• Precision: number of correct positive results divided by the number

of all positive results, 

• Recall / sensitivity: number of correct positive results divided by the
number of positive results that should have been returned. 

• General formula:

F1 = 2·
1

( 1
recall

+
1

precision
)
= 2· precision·recall

precision+ recall

Fβ = (1+β
2 )· precision·recall
(β 2·precision)+ recall
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Area under ROC Curve (AUC): Scalar
and graphical metric

18

18

𝐴𝑈𝐶 =
1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅

2

Positive 
Prediction

Negative
Prediction

Positive 
Class 0.82 0.1

Negative
Class 0.18 0.9

Default Probability (0.5): 



Area under ROC Curve (AUC)
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Use of Metrics in the specialized literature

Taken from: G. Haixiang et al. ESwA 73 (2017), 220-239  
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Data Intrinsic Characteristics in 
Imbalanced Classification

• Introduction
• Overlapping or class separability
• Small disjuncts
• Lack of density
• Noisy data and Borderline examples
• Dataset shift
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Intrinsic Data Issuess: Same class ratio

Easy problem Difficult problem
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V. López, A. Fernandez, S. García, V. Palade, F. Herrera, An Insight into Classification with Imbalanced Data: Empirical
Results and Current Trends on Using Data Intrinsic Characteristics. Information Sciences 250 (2013) 113-141



Data characterization: IR metric
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J. Luengo, A. Fernandez, S. García, F. Herrera. Addressing Data Complexity for Imbalanced Data Sets: Analysis of
SMOTE-based Oversampling and Evolutionary Undersampling. Soft Computing, 15 (10) (2011) 1909-1936
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Data characterization: F1 metric
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J. Luengo, A. Fernandez, S. García, F. Herrera. Addressing Data Complexity for Imbalanced Data Sets: Analysis of
SMOTE-based Oversampling and Evolutionary Undersampling. Soft Computing, 15 (10) (2011) 1909-1936



Overlapping or class separability
• “Small” region of the data space

is represented by a similar
number of training data from
both classes

• Inference mechanism with the
same a priori probabilities:
• Discrimination between classes

becomes harder.
• “Linearly separable” problems

solved by simple classifier
• Regardless of class distribution
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How to address overlapping?
• A dataset is represented by means of its attributes

• A large number of attributes may degrade the recognition
of the borderline areas of the problem:
• Some of these variables may be redundant

• Some others may show a bad synergy among them

• The use of Feature Selection / Augmentation may allow to
diminish the effect of overlapping

• Feature engineering itself does not solve the imbalanced
classification problem

• It is mandatory to apply some of the standard solutions to
address the problem.
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Small Disjuncts
• The concepts are represented 

within small clusters
• Rare cases or Small disjuncts

are those disjuncts in the learned
classifier that cover few training
examples.
• Class A is the rare (minority) and B is the

common (majority).
• Subconcepts A2-A5 correspond to rare cases.
• A1 corresponds to a fairly common case,

covering a substantial portion of the instance
space.

• Subconcept B2 corresponds to a rare case,
showing that common classes may contain
rare cases.

Small disjuncts
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Small Disjuncts: How to address it?
• Obtain additional training data. 
• Use a more appropriate inductive bias (avoid 
Divide&Conquer).

• Apply overfitting management techniques 
(Disabling pruning)

• Employ boosting.
• SMOTE extensions that focus on density of data

29



Lack of density
• Induction algorithms
do not have enough
data to generalise on
sample distribution

• The knowledge model
that learns this data
space becomes too
specific, leading to the
overfitting problem.
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Lack of density (2)
• The lack of density in
the training data may
also cause the small
disjuncts

• Simple resampling
mechanisms do not
address the problem:
• Collect more data!

• Creating some synthetic
instances could improve
decision functions
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Noisy data
• Since the positive class have fewer examples to begin

with, it will take fewer “noisy” examples to impact the
learned subconcept.
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Noisy data (2)
• Classifiers are more sensitive to noise than imbalance.
• As imbalance increases in severity, it plays a larger role in

the performance of classifiers and sampling techniques.
• Most robust classifiers tested over imbalanced and noisy

data are bayesian and SVMs, better on average than rule
induction algorithms or instance based learning.

• Simple undersampling techniques performed the best
overall at all levels of noise and imbalance.

C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, A. Folleco, An empirical study of the classification performance of learners on
imbalanced and noisy software quality data, Information Sciences 259 (2014) 571–595
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Noisy and Borderline examples: 
SMOTE+IPF Solution
• SMOTE algorithm:

• Balances the class distribution
• Helps to fill in the interior of subparts of the minority class

• IPF filter:
• Removes the noisy examples originally present in the dataset and also

those created by SMOTE.
• Cleans up the boundaries of the classes, making them more regular.

J.A. Sáez, J. Luengo, J. Stefanowski, F. Herrera. SMOTE–IPF: Addressing the noisy and borderline examples problem in
imbalanced classification by a re-sampling method with filtering. Information Sciences 291 (2015) 184-203.
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Dataset shift
• Training and test data partitions follow different

distributions.

• Particularly sensitive in imbalanced domains due to the
minority class examples.

• Potential approaches:
• Intrinsic dataset shift: develop techniques to discover and

measure the presence of dataset shift focusing on minority class

• Induced dataset shift: a suitable validation technique needs to be
developed to avoid introducing dataset shift issues artificially

J. G. Moreno-Torres, T. Raeder, R. Aláiz-Rodríguez, N. V. Chawla, F. Herrera, A unifying view on dataset shift in
classification, Pattern Recognition 45 (1) (2012) 521–530
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Dataset Shift: Training and Test with the
same data distribution

Original Data
Training Data Test Data
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Dataset Shift: Training and Test with
different data distribution

Original Data
Training Data Test Data
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Dataset Shift: DOB Partitioning Method
• Misclassifications for the positive class hinder average precision.
• Avoid those errors due to a “random clustering” of the classes, i.e.

generating outliers.
• Keeping data distribution as similar as possible between train and test

folds while maximizing diversity.

V. López, A. Fernandez, F. Herrera, On the Importance of the Validation Technique for Classification with Imbalanced
Datasets: Addressing Covariate Shift when Data is Skewed. Information Sciences 257 (2014) 1-13
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Data level:
• Instance

preprocessing
• Re-sampling.

Algorithm
level:
• change the

behaviour of the
algorithm itself.

Cost-Sensitive
learning:
• Varying costs of 

different
misclassification
types.

• Mix of strategies

Ensemble
methods:
• Multiple classifier

systems
embedding any of 
the former
approaches
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PREPROCESSING
Balancing the training set prior learning

41



Preprocessing algorithms
Removing majority class samples Adding minority class samples
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Preprocessing algorithms (2)

Motivation
Keep influyent examples

Rebalance the training set

Remove noisy instances in 
the decision boundaries

Reduce the training set

Over-sampling
Random
Focused

Under-sampling
Random
Focused

Hybrid Approaches

43



Resampling the original data sets: US vs. OS

Over Sampling
Random
Focused

Under Sampling
Random
Focused

Cost Modifying

0

1

.5

-

+

# examples of -
# examples of +
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Resampling the original data sets: US vs. OS
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Resampling the original data sets: US vs. OS
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Resampling the original data sets: US vs. OS

Over Sampling
Random
Focused

Under Sampling
Random
Focused

Cost Modifying

0

1
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# examples of +
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Taxonomy

Basic 
techniques

TomekLinks

US-CNN

NCL

CPM

SBC

NearMiss

Advanced
models

Undersampling
by cleaning

data

Weighted
Sampling

IHT

Hybrid
Undersampling

Clustering
based

undersampling

ClusterOSS

DSUS

Evolutionary
undersampling

ACO sampling

IPADE-ID

CBEUS

Ensemble
based

undersampling

IRUS

OligoIS

Undersampling techniques
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UnderSampling: Tomek Links (Cleaning)

• Remove both noise and 
borderline examples 
(majority class)
– Ei, Ej belong to different 

classes, 
• d (Ei, Ej): distance
– A (Ei, Ej) pair is called a 

Tomek link if there is no 
example El, such that 
– d(Ei, El) < d(Ei, Ej) or 
– d(Ej, El) < d(Ei, Ej).
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UnderSampling: CNN (Cleaning)

• Remove noise and borderline
• Let E be the original training 

set
• Let E’ contains all positive 

examples from S and one 
randomly selected negative 
example
• Classify E with the 1-NN rule 

using the examples in E’
• Move all misclassified 

example from E to E’
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Preprocessing algorithms: SMOTE

• Oversampling: Simply
replicating examples

• Synthetic Minority Over-
sampling Technique
(SMOTE):
• Generation of new minority 

class examples 
• Interpolation among several 

minority class instances that 
lie together

N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer. SMOTE: synthetic minority over-sampling technique. Journal of
Artificial Intelligence Research 16 (2002) 321-357

For each minority sample
• Find its k-nearest minority neighbours
• Randomly select j neighbours
• Randomly generate synthetic samples

along the lines joining the minority
sample selected and its j neighbours

(j depends on the amount of oversampling desired)
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Solutions: Preprocessing
Original SMOTE
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SMOTE vs Random Oversampling
• Random Oversampling (with replacement) of 
the minority class:
• Making the decision region for the minority class very 

specific.
• In a decision tree, it would cause a new split and lead to 

overfitting.

• SMOTE’s informed oversampling 
• It generalizes the decision region for the minority class.
• Larger and less specific regions are learned.
• Paying attention to minority class samples without 

causing overfitting.
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Overgeneralization
• SMOTE’s is inherently dangerous since it

blindly generalizes the minority area
disregard majority class.

• This strategy is particularly problematic in the
case of highly skewed class distributions:
• Minority class is very sparse w.r.t. the

majority class.
• Results in a greater chance of class

mixture.

Lack of Flexibility
• The number of synthetic samples

generated by SMOTE is fixed in
advance,

• This does not allow for any flexibility in
the re-balancing rate.

SMOTE shortcomings
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The 3 state-of-the-art resampling (DT)
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SMOTE Hybridization: SMOTE + Tomek Links. 
Data Cleaning in original and synthetic samples
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SMOTE Hybridization: SMOTE + ENN

ENN removes any example whose 
class label differs from the class of 

at least two of their neighbors

ENN remove more examples than 
the Tomek links does

ENN remove examples from both 
classes

57



Using different SMOTE Hybridization
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• C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap. Safe-level-
SMOTE: Safe-level-synthetic minority over-sampling technique for 
handling the class imbalanced problem. Pacific-Asia Conference on 
Knowledge Discovery and Data Mining (PAKDD-09). LNAI 5476, Springer-
Verlag 2005, Bangkok (Thailand, 2009) 475-482

Safe_Level_SMOTE:

• H. Han, W.Y. Wang, B.H. Mao. Borderline-SMOTE: a new over-sampling 
method in imbalanced data sets learning. International Conference on 
Intelligent Computing (ICIC'05). Lecture Notes in Computer Science 3644, 
Springer-Verlag 2005, Hefei (China, 2005) 878-887

Borderline_SMOTE:

• E. Ramentol, Y. Caballero, R. Bello, F. Herrera, SMOTE-RSB*: A Hybrid 
Preprocessing Approach based on Oversampling and Undersampling for 
High Imbalanced Data-Sets using SMOTE and Rough Sets Theory. 
Knowledge and Information Systems 33:2 (2012) 245-265.

SMOTE-RSB:

• Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F.: SMOTE-IPF: 
addressing the noisy and borderline examples problem in imbalanced
classification by a re-sampling method with filtering. Information Sciences
291, 184–203 (2015)

SMOTE-IPF:

Other SMOTE Hybridizations
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SMOTE Hybridization: SMOTE-Borderline

60

H. Han, W. Wang, B. Mao. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In:
ICIC 2005. LNCS 3644 (2005) 878-887.



Other Oversampling algorithms
Barua et al. (2014) IEEE 
Transactions on
Knowledge and Data 
Engineerning

MWMOTE—Majority Weighted Minority Oversampling
Technique for Imbalanced Data Set Learning. 

Huaxiang Zhang, 
Mingfang Li (2014). 
Information Fusion

RWO-Sampling: A random walk over-sampling
approach to imbalanced data classification. 

M. Gao, X. Hong, S. 
Chen, C.J. Harris, E. 
Khalaf (2014) 
Neurocomputing

PDFOS: PDF estimation based over-sampling for
imbalanced two-class problems

Lida Abdi and Sattar
Hashemi (2016). IEEE 
Transactions on
Knowledge and Data 
Engineerning

MDO: To Combat Multi-Class Imbalanced Problems by
Means of Over-Sampling Techniques. 

Chumphol
Bunkhumpornpat, Krung
Sinapiromsaran (2016). 
Knowledge and 
Information Systems

DBMUTE: density-based majority under-sampling
technique.
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Comparison of approaches
Imbalanced banana data SMOTE applied to banana
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MWMOTE applied to banana PDFOS applied to banana



Some few extensions of SMOTE

63

A. Fernández, S. García, F. Herrera, N.V. Chawla. SMOTE for Learning from Imbalanced Data: Progress and 
Challenges, Marking the 15-year Anniversary Journal of Articial Intelligence Research 61 (2018) 863-905



Some few extensions of SMOTE
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A. Fernández, S. García, F. Herrera, N.V. Chawla. SMOTE for Learning from Imbalanced Data: Progress and 
Challenges, Marking the 15-year Anniversary Journal of Articial Intelligence Research 61 (2018) 863-905



ALGORITHMIC AND COST-
SENSITIVE SOLUTIONS
Acting over the raw data

65



Algorithmic modifications in imbalanced
• Concentrate on modifying existing learners to alleviate

their bias towards majority class instead on altering the
training set

• This requires a good insight into the modified learning
algorithm and a precise identification of reasons for its
failure in mining skewed distributions

• This reduces their flexibility, but offers higher
specialization potential in tuning the method to the
problem at hand

66



Different decision boundaries

SVM standard approach SVM with instance level sampling
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Taxonomy of algorithmic approaches
Support Vector Machines

• Kernel modification
• Weighted approaches
• Active learning

Decision Trees
• Hellinger distance for splitting

K-Nearest Neighbours
• Gravitation based computation
• Weighted prototypes
• Fuzzy OWA K-NN

Bayesian Classifiers
• Locally weighted NB

One-Class Classifiers
• Training a one-class classifier on the majority class;
• Training a well-tuned one-class classifier on the minority class;
• Training one-class classifiers on both classes and combining their outputs.

68



Example of Decision Tree modification
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Cost-sensitive learning
• Weighting errors made on minority class examples higher than

those of the majority class in computing training error:
• C(+, -) > C(-, +)
• C(+, +) = C(-, -) = 0

• Needs a cost matrix, which encodes misclassification penalty.
• Consider the cost-matrix throughout the building of the model

for achieving the lowest cost.
• However, the cost matrix is often unavalaible

C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of the 17th International Joint Conference on
Artificial Intelligence, 2001, pp. 973–978
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How to obtain cost-matrix
• Provided by an expert.

• Supplied data is accompanied by the cost matrix that
comes directly from the nature of a problem. 

• This usually requires an access to a domain expert that
can assess the most realistic cost values, i.e. credit
card fraud detection

• Estimated using training data. 
• No information on cost matrix available during training:

• Heuristic setting of cost values: IR for cost estimation

• Learning from training data: Thresholding via validation set

71



Cost-sensitive learning
• Direct methods:

• Introduce and utilize misclassification costs into the
learning algorithms.

• Meta-learning:
• “Preprocessing” mechanism for the training data or a

“post-processing” of the output.
• The original learning algorithm is not modified:

• Sampling: assigning instance weights
• Thresholding based on the Bayes decision theory: assign

instances to class with minimum expected cost.

72



Cost-Sensitive Solutions: Meta-Learning

Linear SVM (No weights) Linear SVM (Weights – CS)
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R Packages for imbalanced classification
• Imbalance

• Cordón, I., García, S., Fernández, A. & Herrera, F. (2018). 
Imbalance: Oversampling algorithms for imbalanced classification
in R.. Knowl.-Based Syst., 161, 329-341.

• unbalanced: Racing for Unbalanced Methods Selection
• Dal Pozzolo, Andrea, et al. "Racing for unbalanced methods

selection. IDEAL 2013. Springer Berlin Heidelberg, 2013. 24-31.
• ROSE (Random Over Sampling Examples):

• Menardi, G. and Torelli, N. (2014). Training and assessing
classification rules with imbalanced data. Data Mining and 
Knowledge Discovery, 28:92–122.

• SmoteFamily
• No associated paper
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https://cran.r-project.org/web/packages/imbalance/index.html
https://cran.r-project.org/web/packages/unbalanced/index.html
https://cran.r-project.org/web/packages/ROSE/index.html
https://cran.r-project.org/web/packages/smotefamily/index.html


Imbalance R package: Oversampling Methods

• assigns higher weight to borderline instances, 
undersized minority clusters and examples
near the borderline. 

The Majority Weighted
Minority Oversampling
Technique (MWMOTE):

• work for discrete attributes. 
Rapidly Converging Gibbs

(RACOG) and wrapper-
based RACOG 

(wRACOG), 

• generates synthetic instances so that mean 
and deviation of numerical attributes remain
close to the original ones. 

Random Walk
Oversampling (RWO)

• uses multivariate Gaussian kernel methods to 
locally approximate the minority class. 

Probability Distribution
density Function
estimation based

Oversampling (PDFOS)
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Imbalance R package

Methods included (filtering):
• The filteriNg of ovErsampled dAta us- ing non cooperaTive gamE theoRy

(NEATER): Highly based on game theory. It discards the instances with
higher probability of belonging to the opposite class

Method oversample: 
• Wrapper that eases calls to the described and already existing methods. 

Visual method: plotComparison
• Pairwise comparative grid of a selected set of attributes, both in the original 

dataset and the oversampled one. 

It includes some datasets from the KEEL repository 
• Additional datasets can be easily imported: they must contain a class 

column having two different values.
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Package unbalanced
• Oversampling:

• ROS & SMOTE

• Undersampling:
• RUS + Cleaning (CNN, TL,…)

• “Racing” algorithm: 
• Select strategy for a given

unbalanced task (ubRacing). 

• This function compares the 8 
preprocessing algorithms, 

• Plus applying the learning
over the original dataset.
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Package smotefamily
• smotefamily:
SMOTE oversampling
extensions
• SMOTE, 
• ADASYN, 
• ANS, 
• Borderline-SMOTE, 
• SafeLevels-SMOTE 
• Relocating Safe-level

SMOTE (RSLS)

79

https://cran.r-project.org/src/contrib/Archive/smotefamily/

https://github.com/cran/smotefamily

https://cran.r-project.org/src/contrib/Archive/smotefamily/
https://github.com/cran/smotefamily


Comparison imbalanced packages R
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Python libraries: imbalanced-learn
• Dependant of
Scikit-Learn

• A large number of
preprocessing
techniques

• Include ensemble
learning

• Specific performance 
metrics

• Imbalanced Datasets
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Python libraries: imbalanced-learn
• Sampler class implements 3 main methods from the API:

• fit computes statistics needed to resample the data;
• resample performs the sampling with the desired balancing ratio;

• fit_resample is equivalent to calling both methods directly.

• Input data must be in dataFrame or numpy structure.
from imblearn.over_sampling import RandomOverSampler

ros = RandomOverSampler(random_state=0)

X_resampled, y_resampled = ros.fit_resample(X, y)
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Python libraries: imbalanced-learn
• Hybridizations in preprocessing are also included:
from imblearn.combine import SMOTEENN

from imblearn.combine import SMOTETomek

smote_enn = SMOTEENN(random_state=0)

X_new, y_new = smote_enn.fit_resample(X, y)

• Class Pipeline:
• Inherited from the scikit-learn toolbox to automatically

combine samplers, transformers, and estimators.

• State-of-the-art metrics to evaluate the imbalanced
learning problem: module imblearn.metrics
• Recall, specificity, f-measure (F1), geometric mean, Index of 

Balanced Accuracy (IBA), and support.
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Summary and Discussion
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Imbalanced Learning: CheatSheet
• Apply a standard battery of algorithms to raw problem, in

order to know the base behaviour: kNN, DT, SVM.
• Observe the ROC curve (AUC) in case there is some

threshold that allows a balance between positive and
negative hits, within the requirements of the case study.

• In case the values obtained by the quality metrics are not
sufficient, apply one of the following solutions:
• Undersampling

• Oversampling

• Cost-Sensitive
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CheatSheeet: Solutions
Undersampling applied in case:

• High sensitivity is desired: RUS
• There may be noise in the set: 

RUS, CNN, TL
• There are a high number of 

negative examples: RUS
• There is a need to reduce the

learning time: RUS, Class
Weights

• High Dimensionality: RUS, 
Class Weights

Oversampling applied in case:

• A good balance to be kept for
TPR, TNR: ROS

• There may be subclusters of 
the positive class: SMOTE

• Positive class reinforcement
needed in overlapping areas: 
SMOTE

• Few data samples: SMOTE
• High Dimensionality: ROS, 

Class Weights
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CheatSheet: Final comments
• It is quite convenient to analyze the ROC curve to find

adequate probability thresholds: a posteriori approach
• Hyperparametrization: find optimal values

• the number of neighbors (k) in kNN, 

• the pruning in a decision tree, 

• the kernel values in an SVM…

• Ensembles-based techniques are very powerful, best if
these are used in synergy with preprocessing:
• RUSBoost

• SMOTEBagging.
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The Imbalanced Learning Book
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